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Abstract-A solution is given for the steady-state heat conduction problem of the interface crack between 
dissimilar anisotropic media. Based on the Hilbert problem formulation and a special technique of 
analytical continuation, exact expressions are obtained for the temperature and temperature gradients for 
both the heat flux prescribed and temperature prescribed boundary conditions. It is found that the 
temperature gradients near the crack tip always possess the characteristic inverse square root singularity 
in rectilinearly anisotropic bodies provided the heat conductivity coefficients are positive definite and 
symmetric. Moreover, the temperatures or temperature gradients associated with the dissimilar media can 
be easily obtained from the corresponding problem associated with the homogeneous media by a simple 
substitution. Special examples are given to the homogeneous and isotropic materials and the solutions 
reduce to the results given in the literature. The strength of heat flux singularities related to the crack 

dimension is also discussed. 

INTRODUCTION 

THE WIDESPREAD use of composite materials in struc- 
tural applications has encouraged the development of 
heat conduction in anisotropic media. In particular, 
the heat flux concentration around material dis- 
continuities in anisotropic bodies has been of serious 
concern in high-temperature composite materials. 
When the flow of heat in a solid is disturbed by some 
discontinuity such as a hole or a crack, the local 
temperature gradient around the discontinuity is 
increased which may cause material failure through 
crack propagation. Problems of this kind present con- 
siderable mathematical difficulty due to the presence 
of material inhomogeneity and geometrical dis- 
continuities. A number of studies dealing with flaw- 
induced thermal disturbance have been published by 
Florence and Goodier [I] and Olesiak and Sneddon 
[2]. The singularity of l/,/(r) of the temperature gradi- 
ent near the crack tip for an infinite cracked plate was 
first derived by Sih [3]. The value of I’ here stands 
for the radial distance measured from the crack tip. 
Recently, Tzou [4] discussed the singular behavior of 
the temperature gradient in the vicinity of a macro- 
crack tip by using the method of eigenfunction expan- 
sion developed by Williams [5]. His result shows that 
the power of singularity of the temperature gradient is 
not affected by the discontinuous jumps of the thermal 
properties across the material interface, while that for 
a crack in a polarly orthotropic medium depends on 
the ratio of thermal conductivities in the principal 
directions of material orthotropy. By applying the 
Hilbert problem formulation [6] and a special tech- 
nique of analytical continuation, Chao and Chang [7] 

gave a simple and compact version of the general 
solution for the thermal interface crack problem in 
dissimilar anisotropic media. They showed that the 
temperature gradients near the crack tip always possess 
the characteristic inverse square root singularity in 
rectilinearly anisotropic bodies provided that heat 
conductivity coefficients obey the reciprocal relation, 
k,j = kji (i #j). 

As a continuation, the present work further 
explores the influences of thermal boundary con- 
ditions imposed on the crack surface on the singular 
behavior of the heat fluxes near the crack tips. Both 
the heat flux prescribed and temperature prescribed 
boundary conditions are considered in the following 
study, which are the most frequently encountered situ- 
ations occurring in physical problems. Special atten- 
tion is given to the case when the two media are 
composed of the same material to verify the general 
solution. An example has been given for the isotropic 
materials for which the heat eigenvalues are equal 
to fi. The comparison with solutions given in the 
literature [3, 81 shows that the solutions presented 
here are exact and general. Finally, a discussion is 
presented on the strength of heat flux singularities 
related to the crack dimension for both the heat flux 
prescribed as well as temperature prescribed bound- 
ary conditions. 

HEAT CONDUCTION IN THE SOLID 

The heat fluxes in the x,x,-coordinate system of an 
anisotropic medium can be expressed as [9] 

hi = -kijT.j (i,j= 1,2), (1) 
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NOMENCLATURE 

half length of crack T,(s,) temperature prescribed on the crack 
bimaterial constants surrace 

c, coefficients in series solutions s, rectangular coordinate axes, i = 1, 2 

4 pure imaginary constants I complex coordinate, z = s, +P.Y~. 

Ilo constant heat flux prescribed on the crack 
surface Greek symbols 

11, heat flux in .Y, direction (i = I) or sZ 0 polar angle at the crack tip 
direction (i = 2) P characteristic value of conductivity 

h(s ,) heat flux prescribed on the crack surface coefficients 

k” isotropic conductivity coefficient m complex temperature function 

kl, conductivity coefficients for anisotropic a(:) complex function, O(Z) = ~#J’(z) 
material Q,(Z) complex function associated with 

K conductivity coefficients, K, = k,, +pkiz dissimilar media (i = I, 2). 

Re{ ) 
radial distance measured from the crack tip 
real part of a complex function Superscripts 

10 constant temperature prescribed on the X”’ physical quantity X in medium CI, CI = I, 2 
crack surface X’ X on upper (+) or lower (-) sides of 

T temperature crack surface. 

where k,, are the heat conductivity coefficients and T, 
/I,, /zZ denote temperature, heat fluxes in the s, and 
s1 direction, respectively. A subscript after a comma 
stands for differentiation with respect to this index 
and repeat indices imply summation. The steady-state 
heat conduction equation can be written as 

/I,,~ = -k,, T,,, = 0. (2) 

The general solution to equation (2) is given by [IO] 

T = C~(Z)+I#J(Z), z = I, +/IS?, (3) 

where the overbar denotes complex conjugate. Fur- 
thermore, 4(z) is an arbitrary function which can be 
evaluated by matching the specified boundary con- 
ditions, and p is the root of following characteristic 
equation with positive imaginary part 

k,,pc?+2k,2p+k,, = 0. (4) 

Since k,, are positive definite and symmetric based 
on irreversible thermodynamics [9], the characteristic 
value p in equation (4) must be a complex. For iso- 
tropic or orthotropic material, the conductivity 
coefficient k , 2 is zero, and the characteristic value p 
in equation (4) becomes purely imaginary. By letting 
Q(z) = d’(z) and K, = ki, +pk,?, the heat fluxes rep- 
resented in equation (1) can be written as 

-II, = K,@(z) + K,@(z). (5) 

Hence, the solution of the steady-state heat con- 
duction problem has been resolved to finding the 
proper function 4(z) or m(z) with satisfaction of the 
given boundary conditions. 

INTERFACE CRACK 

Consider a central crack of half length n lying along 
the interface of two anisotropic media as shown in 
Fig. I. Note that the crack length considered in this 
study is extremely small compared with the infinite 
media and a perfect line crack model can then be 
understood from an engineering point of view. From 
equations (3) and (S), the temperature derivative and 
heat flux of dissimilar media can be expressed as 

{ 

@“(z)+@“(z), ZES,, 
T’ = 

@‘*‘(Z)+a+*‘(z), ZES*, (6) 

-II* = 
I 

K(?“~(“(z)+K(?“~“)(-), -‘ES,, 

K’,?‘@,“‘(z) + K’z?‘d+(z), ZE Sz, (7) 

where T’ = dT/a.x,. The superscripts (1) and (2) are 
used to denote the quantities pertaining to the upper 
and lower media, which are located on x1 > 0 (S,) 
and x2 < 0 (S?), respectively. One of the important 
properties of holomorphic functions used in the 
method of analytical continuation is that if 4(s) is 

X2 

t 
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(2) 
FIG. I. Interfacial crack between dissimilar anisotropic 

media. 
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holomorphic in S, (or S?), then $(z) is holomorphic d, = -d,, if the conductivity coefficients k,, are posi- 
in S1 (or S,) [6]. From this property and using equa- tive definite and symmetric. Then, equation (15) leads 
tions (6) and (7), the functions Q,(Z) and Q2(z) can to the following Hilbert problem 
be defined as 

7 o”‘(z)-@‘-y~) -ES,, (17) 7 - 
*I(3 = (8) 

n:(x,)+n;(x,) = -y 
I 

.(yz)-ip(I)(z), ZES2, 
The problem now reduces to find a sectionally holo- 

K(?W’)(Z)-?pFyz), ZES,, morphic function, !A, (z), in the whole plane subjected 
Q?(Z) = 

K(2’@‘2’(r) -K’,“@“‘(Z), ZES2. (9) to the given boundary conditions. The solution to this 
Hilbert problem can be obtained as [6] 

Now, the solution to the interface crack problem has 
been reduced to the determination of two functions 
R, (2) and Q?(Z). In the following work, two different 
boundary conditions on the crack surface are con- 
sidered separately. 

” -1 
R,(Z) = 

2niJ(z’ -a2) s 

h(t)J(t? -a?) dr 
--y d,(t---J) 

c,+c,z 
+ &zma2)’ (I81 

1. Heatjhx prescribed boundary condifion 
Let the heat flux on the crack surface be prescribed 

and the boundary condition along the interface 
becomes 

h\“(X,,O) =k’z2’(x,,0) =h(x,), lx,1 <a. (IO) 

Moreover, the interface continuity conditions on the 
bonded portion require that 

/1(2”(X,,O) = h’zz’(x,,O) 
T”‘(X,.O) = T’“(x,,O) 1 ’ 

lx,1 >a. (11) 

Since the heat flux hz is continuous along the interface 
from equations (IO) and (1 I), R?(z) is now holo- 
morphic in the entire domain, and by Liouville’s 
Theorem we have Q,(z) = 0 if the heat flux tends to 
zero at infinity. From equation (1 I), the temperature 
is continuous along the interface except the crack 
surface and so is the differentiation of tempera- 
ture. Hence, Q, (z) is a sectionally holomorphic in the 
entire domain with cut on Ix, 1 < a. Now, the inverse 
expressions of equations (8) and (9) lead to 

Q”‘(z) = b,R,(z), 

if+) = b2Q,(z), =ESI’ 

W2’(z) = -b2R,(Z), 
i@-(z) = -b@,(Z), zEs27 

(12) 

(13) 

where 
-- 

b, = Ki2’/(Ki2’- K:“), b, = K:“/(K’,Z’-K$“). 

(14) 

Substituting equations (12) and (13) into (7) and using 
equation (lo), we have 

-h(x,) = [K’,“fD”‘(x,)]+ +[K$“@“‘(x,)]- 

= d,Q:(x,)-d,Q;(x,h lx,1 < a. (15) 

The superscripts + and - denote the upper and lower 
sides of the crack surface, respectively, and the bi- 
material constant d, is defined as 

Let the heat flux on the crack surface be kept at a 
constant value h,, i.e. 

h(x,) = ho. (19) 

The remaining unknown constants c,, and c, in equa- 
tion (18) could be determined by the infinity condition 
and the single-valuedness requirement. Since the heat 
flux tends to zero at infinity, we have 

c, =o. (20) 

The requirement of single-valuedness condition can 
be expressed by 

a 
I 

[Q:(x,)-Q;(x,)]dx, =O. (21) 
--Y 

Knowing that ,/(z’-aZ) = fi,/(a’-xf) for lx,1 < a 

and x2 = f0, equation (21) leads to 

co = 0. (22) 

Therefore, the final simplified result for RI (z) in equa- 
tion (18) is 

Q,(z) = j” 
2d,,/(z’-a’) 

[z-J(z’-a’)]. (23) 

The solutions for Q(Z) can be obtained by substituting 
equation (23) into equations (12) and (13), we have 

(24) 

a’2’(z) = 2K~2,~P2-a2) [z-J(2-a2)19 zES2. 

(25) 

The temperature functions #‘)(z), #‘)(z) pertaining 
to the upper and lower media can be also obtained by 
integrating equations (24) and (25), respectively. They 
are 

d, = K(2’)K:2’I(K:2’-KI”). (16) 

It can be shown that d, is purely imaginary, i.e. 
f)‘“(z) = &[&z’-u”,-z], ZES,, (26) 
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a 

(2) 
FIG. 2. Polar coordinate centered at the crack tip. 

@‘2’(z) = ho m~J(~2-+-~9 =9,, (27) 

where the integration constants have been neglected 
due to the assumption that the temperature tends to 
zero at infinity. Hence, the solution of temperature 
field in the anisotropic dissimilar media is then 
achieved by substituting equations (26) and (27) into 
equation (3). It is noted that the solutions pertaining 
to the upper or lower media of dissimilar materials 
are dependent on their own material properties. More 
precisely, the solution associated with the dissimilar 
media can be easily obtained from the corresponding 
problem in the homogeneous media by a simple sub- 
stitution of their own material properties. 

In order to examine the local behavior of the tem- 
perature and temperature gradient in the vicinity of 
the crack tip, one considers the polar coordinate sys- 
tem (r, 6) centered at the crack tip as shown in Fig. 
2. In the vicinity of the crack tip, the radial distance 
r is much smaller than the crack length, i.e. r CC a, and 
the heat fluxes and temperature near the crack tip take 
the approximate forms 

h:“’ = _ hoJ(a) Re Iv; 

J@r) KY’ J(cos o + p”) sin B) ’ 
(28) 

’ 
(29) 

T’“’ = ho,/(2ar)Re &J(cosB+p’“‘sin0) , (30) 
2 

where 0 < 6 < rt is considered for a = 1 and 
-n < 19 < 0 for CI = 2. Re { } denotes the real part of 
a complex in the bracket. It is shown that both the 
near-tip heat fluxes in the x and y directions behave 
as the singularity of I/ J(r) while the near-tip tem- 
perature behaves as J(r). 

For isotropic material, the conductivity coefficients 
are independent of the direction, i.e. 

k’,=; = k’;: = k6”’ 3 k’~~=k’#=O (a= 1,2), (31) 

where kb’), kL2) are the isotropic conductivity coeffi- 
cients pertaining to the upper and lower media, re- 
spectively. The heat fluxes and temperature in the 
vicinity of the crack tip now reduce to 

h:“’ = - !%&,,q, 
r 

T”’ = $ JQar) sin i. 
0’ 

For homogeneous and isotropic material, the con- 
ductivity coefficients further reduce to 

&I) = kv) = k 
09 (35) 

and the temperature in the vicinity of the crack tip 
becomes 

T=: J(2nr)sini. 
0 

(36) 

It is shown that the angular distribution of tem- 
perature is proportional to sin (e/2), which is identical 
to the solution given by Sih [3]. 

2. Temperature prescribed boundary condition 
Let the temperature on the crack surface be pre- 

scribed and the boundary condition along the inter- 
face can be represented as 

T”‘(x,,O) = T”‘(x,,O) = T,(x,), lx,1 <a, (37) 

or in the differential form 

T”“(X,,O) = T”2’(X,,0) = To(x,), lx,1 < a, (38) 

while the interface continuity conditions on the 
bonded portion are the same as equation (11). Since 
the temperature is given on the crack surface, then 
R,(z) is now holomorphic in the entire domain, which 
is identical to zero as the heat flux vanishes at infinity. 
Furthermore, Q,(z) is a sectionally holomorphic func- 
tion with cut on the crack, which implies the jump of 
heat flux across the crack surface. Equations (8) and 
(9) now lead to 

Q”‘(z) = G(z) = b,Q2(z), ZES,, (39) 

@‘2’(z) = m”‘(z) = -b,i&(z), ZES,, (40) 

where 

b, = -6, = l/(K:“-K$2’). (41) 

Substituting equations (39) and (40) into (6) and using 
equation (38), the problem associated with the tem- 
perature prescribed boundary condition leads to the 
following equation 

*!i2:(x,)+n;(x,) = F (42) 
3 

and the solution is ready to follow as [6] 

Q,(z) = . l 
27rlJ(Z2 -4 s D T’,(GJ(I’--~)~~ 

--D M-4 

c3 + c4z 

+ J(z2-a2)’ C43) 

,.+,w = hoJ(a) . e 

~s’nz9 
(32) perature to, i.e. 

Let the crack surface be kept at the constant tem- 
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T&I) = to. WV 
The constant cq in equation (43) becomes zero as 
the heat flux vanishes at infinity. Equation (43) now 
reduces to 

Q,(z) = J(zL’)~ 
Substitutingequation (45) into (39) and (40), thecom- 
plex functions associated with the temperature gradi- 
ent become 

W’(z) = J(;:b,02)) ZES,. (47) 

Similarly, the temperature functions can be obtained 
by integrating equations (46) and (47). They are 

f@“(Z) = c3bx log [z+J(z’-a?)], zes,, (48) 

qs2’(z) = c,b,log[z+J(Z2--a?)], .7ES2, (49) 

where the integration constants have been neglected 
due to the assumption that the temperature is set 
to be zero at x, = + (1 +a’)/2, x2 = 0. Now, the re- 
maining unknown c) in equation (43) will be found 
from the condition of constant temperature t, pre- 
scribed on the crack surface. Substituting equation 
(48) into equation (3) and knowing that Re {log(x, + 
,,/(~:-a~))} = logn for lx,] <a, it yields 

c, = t,/26, log a. (50) 

The complete solutions for the temperature gradient 
and temperature can then be obtained by substituting 
equation (50) into (46)-(49). It is further confirmed 
that the solutions pertaining to the individual medium 
depend on its own material properties only for steady- 
state heat conduction problem. Similar to the pro- 
cedures shown previously, the near-tip solutions take 
the forms 

h’;’ = 
J(2a:o) log cI Re { J(cos Bt’zia) sin 0) ’ (51) 

h:“’ = 
Jc2n:p log a Re J(cos 0::(‘) sin 0) ’ (52) 

T’“’ = So Re (log [a+,/(2ar(cosO+~“‘sin0))]}. 

(53) 

It is then concluded that the singularity l/,/(r) of the 
heat flux in the vicinity of the crack tip always prevails 
for rectilinearly anisotropic bodies regardless of the 
boundary conditions prescribed on the crack surface. 
For isotropic material, equations (51), (52) and (53) 
reduce to 

h’;’ = 
t,k$J’ 

J(2ar) logncosiV 
(54) 

h’z”’ = 
l,kb”’ 0 

j(2ar)logasmZ’ (55) 

T’“’ = &log n’+20r+20J(2ar)cos; , 
> 

(56) 

which is identical to the results given in the literature 
[8] for a homogeneous medium. Note that the 
coefficients of l/,/(r) appearing in equations (28) and 
(29) or (51) and (52) may be interpreted as the 
strength of heat flux singularities at the ends of the 
crack which is found to depend on material properties, 
crack length and the boundary conditions prescribed 
on the crack surface. It is seen that the strength of 
heat flux singularity increases with decreasing of the 
crack length for the temperature prescribed boundary 
condition while it behaves contrarily for the heat flux 
prescribed boundary condition. 

CONCLUSION 

The general solutions to the thermal interface crack 
problems between dissimilar anisotropic media have 
been obtained by applying the Hilbert problem for- 
mulation and a special technique of analytical con- 
tinuation. Two different types of boundary condition 
have been considered in the present analysis. The heat 
fluxes or temperature gradients near the crack tips are 
found to present the I/,/(r) singularity for both the 
heat flux prescribed and temperature prescribed 
boundary conditions which is not affected by the dis- 
continuous jumps of thermal anisotropy across the 
material interface. Increasing the crack length may 
enhance the strength of heat flux singularities for the 
heat flux prescribed boundary condition. On the con- 
trary, the strength of heat flux singularities would 
diminish as the crack length increases for the tem- 
perature prescribed boundary condition. It is shown 
that the solutions for thermal field associated with 
the dissimilar media can be easily obtained from the 
corresponding problem associated with the homo- 
geneous medium by a simple substitution regardless 
of the boundary conditions prescribed on the crack 
surface. Problems including multiple interface cracks 
between dissimilar anisotropic media can also be 
solved by the present approach once the Cauchy 
integrals are carried out with the aid of contour inte- 
gration. Complicated problems, including irregularly 
shaped cracks, associated with the temperature gradi- 
ent in transient stage call for a numerical method which 
is not the problem considered in this study. 
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